Seedling resistance of winter and spring bread wheat cultivars to <i>Pyrenophora tritici-repentis</i>

Author:

Mironenko N. V.1ORCID,Kovalenko N. M.1ORCID,Baranova O. A.1ORCID,Khakimova A. G.2ORCID,Mitrofanova O. P.2ORCID

Affiliation:

1. All-Russian Research Institute of Plant Protection

2. N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Abstract

   Background. The fungus causing tan spot on wheat leaves, Pyrenophora tritici-repentis (Ptr), continues to expand its range and inflict severe damage to the crop. Development of resistant cultivars remains the most effective and environmentally friendly way of disease control.   The objective was to characterize modern domestic cultivars of bread wheat (Triticum aestivum L.) according to their seedling resistance to geographically different Ptr populations, identify sources of Ptr resistance, locate the presence of dominant Tsn1 alleles in cultivars, and assess their relationship with Ptr susceptibility.   Materials and methods. Ptr resistance was assessed in 76 winter bread wheat cultivars from the VIR collection, and 4 winter and 43 spring bread wheat cultivars from the Volga region. Isolates from the Krasnodar, Tambov, Tatarstan and Altai Ptr populations (2022) served as the inoculum. Dominant Tsn1 alleles were identified by PCR using the Xfcp623 marker.   Results. Bread wheat cultivars were characterized for the type of response in the leaves of their seedlings to isolates from Ptr populations and the presence/absence of dominant Tsn1 alleles. Resistance to isolates from two or three Ptr populations was observed in 11 winter and 13 spring cultivars. Differences between winter and spring forms in their resistance levels wereshown. Dominant Tsn1 alleles were identified in 26 cultivars. No statistically significant association was found between the presence/absence of dominant Tsn1 alleles and the manifestation of resistance/susceptibility to Ptr.   Conclusion. The disclosed diversity of bread wheat cultivars in their responses to the infection with isolates of different Ptr populations may be due to their differences in the alleles of Ptr resistance/susceptibility genes as well as the presence of still unknown effector genes in the pathogen’s genome. Cultivars resistant to two or three Ptr populations can be used by breeders as sources of seedling resistance.

Publisher

FSBSI FRC N.I. Vavilov All-Russian Institute of Plant Genetic Resources

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3