Verification of three-dimensional mathematical modeling when calculating the combustion of hydrocarbon fuel in an experimental cylindrical furnace enriched with a plasma fuel system

Author:

Messerle V.E.ORCID, ,Bolegenova S.A.ORCID,Bodykbayeva M.K.ORCID,Kuykabayeva A.A.ORCID,Slavinskaya N.,Tastanbekov A.K.ORCID, , , , ,

Abstract

In this work, the operation of the boiler in traditional and plasma-activated conditions is investigated. To test the possibility of modeling the Cinar ICE program with an understanding of the physical mechanism of the processes of electrothermochemical fuel preparation (ETCF) and combustion, a study of coal combustion in an experimental furnace with a thermal power of 3 MW equipped with a plasma fuel system was carried out. To study the combustion process of an air mixture that had undergone preliminary plasma preparation for combustion, one-dimensional plasma-coal and three-dimensional computer programs Cinar ICE were used, which study in detail the mechanism of the kinetics of thermochemical exchange in a two-phase flow, where the plasma fuel source is located, and the exact geometry of the furnace, and the kinetics of the process сombustion of coal particles. As a result of calculations, the distribution of temperature, velocity of gas and particles in the process of ETCPT, the concentration of gas-phase mixtures, the concentration of carbon and the degree of gas contamination in the remainder of alloyed coal were determined. It was found that the plasma activation of combustion affects the thermal characteristics of the Torch, the mechanical non-combustible fuel residue and the concentration of nitrogen oxide at the outlet from the furnace. It has been proven that when simulating coal combustion, it is possible to achieve an effective description of the process using the Cinar ICE program.

Publisher

Institute of Metallurgy and Ore Benefication

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3