Experimental analysis of a transcritical heat pump system with CO2 refrigerant

Author:

ELBİR Ahmet1ORCID,BAYRAKÇI Hilmi Cenk1ORCID,ÖZGÜR Arif Emre1ORCID,DENİZ Özdemir1

Affiliation:

1. Süleyman Demirel University, Renewable Energy Resources Research Center, 32260, Isparta/Turkey

Abstract

Today, it is seen that increasing environmental pollution is getting ahead of the increasing energy need. Therefore, more environmentally friendly and more economical refrigerants are needed. In this context, carbon dioxide appears as a natural refrigerant in cooling systems and heat pump (HP) systems, and it has been widely used in recent years. In this study, a single-stage heat pump system with a CO2 refrigerant, with a transcritical cycle, has been experimentally studied. The system is designed as a water-to-water heat pump. The performance of the system has been determined experimentally. In the system, capillary pipes with a diameter of 2.00 mm and two different lengths are used. It is aimed to create different evaporation pressures with two capillary tubes. The first capillary tube is 2.40 m long and the second is 1.20 m long. Gas cooler pressures, gas cooler and evaporator cooling water mass flow rates were kept the same for both cases. A certain gas charge was made and measurements were made for both cases. Thermodynamic analysis and comparison of the system were made. In the short capillary tube system, it was observed that the COPHP value was 7.2% higher, the CO2 mass flow rate increased by 9.1% to achieve the same gas refrigerant pressure value, and the power consumption in the compressor decreased by 1.8%. In addition, the gas cooler outlet temperature, the evaporator outlet temperature and the change in ambient temperatures, as well as the exergetic destruction and exergetic efficiencies in the system and system components are presented in figures with EES.

Publisher

International Advanced Researches and Engineering Journal

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3