Lovastatin Inhibits Transforming Growth Factor-β1 Expression in Diabetic Rat Glomeruli and Cultured Rat Mesangial Cells

Author:

KIM SUNG IL,HAN DONG CHEOL,LEE HI BAHL

Abstract

Abstract. Diabetic nephropathy is a leading cause of end-stage renal disease and is characterized by excessive deposition of extracellular matrix (ECM) proteins in the glomeruli. Transforming growth factor-β (TGF-β) is the major mediator of excessive accumulation of ECM proteins in diabetic nephropathy through upregulation of genes encoding ECM proteins as well as downregulation of genes for ECM-degrading enzymes. It has been shown that lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase, delays the onset and progression of different models of experimental nephropathy. To evaluate the effect of lovastatin on the development and progression of diabetic nephropathy, streptozotocin-induced diabetic rats were studied for 12 mo. In untreated diabetic rats, there were significant increases in blood glucose, urine albumin excretion, kidney weight, glomerular volume, and TGF-β1 mRNA expression in the glomeruli compared with normal control rats treated with citrate buffer only. Treatment with lovastatin in diabetic rats significantly suppressed the increase in urine albumin excretion, kidney weight, glomerular volume, and TGF-β1 mRNA expression despite high blood glucose levels. To elucidate the mechanisms of the renal effects of lovastatin, rat mesangial cells were cultured under control (5.5 mM) or high (30 mM) glucose with lovastatin alone, mevalonate alone, or with both. Under high glucose, TGF-β1 and fibronectin mRNA and proteins were upregulated. These high glucose-induced changes were suppressed by lovastatin (10 μM) and nearly completely restored by mevalonate (100 μM). These results suggest that lovastatin has a direct cellular effect independent of a cholesterol-lowering effect and delays the onset and progression of diabetic nephropathy, at least in part, through suppression of glomerular expression of TGF-β1.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3