Abstract
BackgroundBilateral renal agenesis (BRA) is a lethal con genital anomaly caused by the failure of normal development of both kidneys early in embryonic development. Oligohydramnios on fetal ultrasonography reveals BRA. Although the exact causes are not clear, BRA is associated with mutations in many renal development genes. However, molecular diagnostics do not pick up many clinical patients. Nephronectin (NPNT) may be a candidate protein for widening diagnosis. It is essential in kidney development, and knockout of Npnt in mice frequently leads to kidney agenesis or hypoplasia.MethodsA consanguineous Han family experienced three cases of induced abortion in the second trimester of pregnancy, due to suspected BRA. Whole-exome sequencing (WES)–based homozygosity mapping detected underlying genetic factors, and a knock-in mouse model confirmed the renal agenesis phenotype.ResultsWES and evaluation of homozygous regions in II:3 and II:4 revealed a pathologic homozygous frameshift variant in NPNT (NM_001184690:exon8:c.777dup/p.Lys260*), which leads to a premature stop in the next codon. The truncated NPNT protein exhibited decreased expression, as confirmed in vivo by the overexpression of WT and mutated NPNT. A knock-in mouse model homozygous for the detected Npnt mutation replicated the BRA phenotype.ConclusionsA biallelic loss-of-function NPNT mutation causing an autosomal recessive form of BRA in humans was confirmed by the corresponding phenotype of knock-in mice. Our results identify a novel genetic cause of BRA, revealing a new target for genetic diagnosis, prenatal diagnosis, and preimplantation diagnosis for families with BRA.
Funder
The Science and Technology Innovation Program of Hunan Province
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献