ANTIBACTERIAL INFLUENCE OF SILVER NANOPARTICLES ON MULTI-RESISTANT STRAINS OF K. PNEUMONIAE ISOLATED AT HOSPITALS

Author:

Holubnycha Viktoriia M.1ORCID,Korniienko Viktoriia V.2ORCID,Husak Yevheniia V.3ORCID,Tverezovska Viktoriia О.4ORCID,Ivakhniuk Tetiana V.1ORCID,Varava Yuliia V.5ORCID,Fedorenko Viktoriia О.6ORCID

Affiliation:

1. Department of Public Health, Academic and Research Medical Institute, Sumy State University, Sumy, Ukraine

2. Center of Scientific Equipment Collective Use, Academic and Research Medical Institute, Sumy, Ukraine

3. Center of Scientific Equipment Collective Use, Academic and Research Medical Institute, Sumy, Ukraine; Silesian University of Technology, Faculty of Chemistry, Gliwice, Poland

4. Department of Public Health, Academic and Research Medical Institute, Sumy State University, Sumy, Ukrain

5. Academic and Research Medical Institute, Sumy, Ukraine

6. University of Latvia, Riga LV 1586, Latvia

Abstract

Introduction. Overuse and misuse of antibiotics in humans, animals, and agriculture has led to the widespread rise of antibiotic resistance and strengthened nosocomial pathogenes' impact. Klebsiella pneumoniae became an increasing threat to public health. Nanomaterials are promising alternatives to conventional antibiotics in the fight against multi-resistant germs. Silver nanoparticles are well-known metallic nanoparticles with antimicrobial activity. Our research aimed to evaluate the spreading of K. pneumonia resistant to antibiotics at hospital and assess the effectiveness of Ag NPs against multi-resistant clinical strains of K. pneumoniae. Material and methods. K. pneumoniae strains were isolated and identified with the use of conventional bacteriological techniques. Susceptibility of the microorganisms was assessed to inhibitors of β-lactamases, carbapenems, macrolides, oxazolidinones, and other groups of antibiotics with use Kirby-Bauer disk diffusion method. The capability of AgNPs to inhibit attachment and multiplication of the K. pneumoniae multi-resistant strains was tested with the use of serial microdilution method, resazurin assay, and SEM. Results. K. pneumoniae was isolated from 13.7% of samples predominantly at the microbial association (97.5%). The microorganisms were resistant to five or more antibiotics in 73.2% of cases. AgNPs possess antimicrobial activity against tested strains at concentrations varied from 1.25 µg/ml to 2.5 µg/ml and kill all germs in 3 hours of incubation. AgNPs inhibited biofilm formation at initial stages and destroyed the mature (2 days) biofilm with Ag NPs treatment at concentrations 20-40 µg/ml. The effectiveness of mature K. pneumoniae biofilm treatment with AgNPs depended on biofilm age. The SEM images of the two-days biofilm reveal lysis of the bacterial cells after the cocultivation with Ag NPs but SEM analysis detected the maintaining of the three-dimensional structure in the case of a five-day biofilm after cocultivation with AgNPs. Conclusions. The distribution of K. pneumonia among patients with laryngeal pathology and its sensitivity to eleven antibiotics were examined. There was revealed the high rate of K. pneumonia multi-resistant strains. Ag NPs have strong antibacterial and anti-biofilm potential against multi-resistant K. pneumoniae. Therefore, our results highlight that the Ag NPs have promising antimicrobial and anti-biofilm abilities against multi-resistant clinical strains of K. pneumoniae.

Publisher

Sumy State University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3