Innovations in Management Forecast: Time Development of Stock Prices with Neural Networks

Author:

Vochozka Marek1,Horak Jakub1,Krulicky Tomas1

Affiliation:

1. Institute of Technology and Business in Ceske Budejovice (Czech Republic)

Abstract

Accurate prediction of stock market values is a challenging task for over decades. Prediction of stock prices is associated with numerous benefits including but not limited to helping investors make wise decisions to accumulate profits. The development of the share price is a dynamic and nonlinear process affected by several factors. What is interesting is the unpredictability of share prices due to the global financial crisis. However, classical methods are no longer sufficient for the application of share price development prediction.However, over-relying on prediction data can lead to losses in the case of software malfunction. This paper aims to innovate the prediction management when predicting the share price development over time by the use of neural networks. For the contribution, the data on the prices of CEZ, a.s. shares obtained from the Prague Stock Exchange database. The stock price data are available for the period 2012-2017. In the case of Statistica software, the multilayer perceptron networks (MLP) and the radial basis function networks (RBF) are generated. In the case of Matlab software, the Support Vector Regression (SVR) and the Back-Propagation Neural Network (BPNN) are generated. The networks with the best characteristics are retained and based on the statistical interpretation of the results, and all are applicable in practice. In all data sets, MLP networks show stable performance better than in the case of SVR and BPNN networks. As for the final assessment, the deviation of 2.26% occurs in the most significant differential of the maximal and the minimal prediction. It is not necessarily significant regarding the price of one stock. However, in the case of purchasing or selling a large number of stocks, the difference may seem significant. Therefore, in practice, the application of two networks is recommended: MLP 1-2-1 and MLP 1-5-1. The first network always represents a pessimistic, minimal prediction. The second one of the recommended networks is an optimistic, maximal prediction. The actual situation should correspond to the interval of the difference between the optimistic and pessimistic prediction. Keywords: Statistica software, Matlab software, stock price development, neural networks, prediction.

Publisher

Sumy State University

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3