In vitro Screening for Cytotoxic Effect of Pore Forming Colicin N and Its Domains on Human Cancer Cells

Author:

Duangkaew Methawee, ,Arunmanee Wanatchaporn,

Abstract

Protein-based drugs have increasingly become an important segment of cancer treatment. In comparison with chemotherapy, they offer high efficacy and fewer side effects due to specifically targeting only cancer cells. Monoclonal antibodies are currently the main protein-based drugs in the market but their complexity and limitations in tumour penetration led to the development of alternative protein therapeutics such as pore-forming toxins. Colicin N (ColN), a pore-forming protein produced by E. coli, was previously found to exhibit cytotoxicity and selectivity in human lung cancer cells with promising potential for further development. Here we aimed to screen for the cytotoxicity of ColN in breast (MCF-7 and MDA-MB-231), lung (A549) and colon cancer cells (HT-29 and HCT-116) by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay with various concentrations for 72 h and to investigate the cytotoxic effect of ColN domains on cancer cells. It showed that ColN mildly mediated the decrease in cell viability except for MCF-7. The highest effect was seen in A549 and HCT-116 cells which showed 31.9% and 31.5% decrease in cell viability, respectively. The mild inhibition or promotion of cancer cell proliferation by ColN tend to be based on the cell types. Furthermore, to search for the functional domain of ColN used for cytotoxicity, full-length ColN and truncated ColN with deletion of translocating, receptor binding and pore-forming domains were also tested on HCT-116 colon cancer cells. The findings indicated that HCT-116 cells were not significantly sensitive to ColN but full length ColN caused slight decrease in cancer cell viability. The data in this study will benefit the further development of ColN for alternative protein-based cancer therapy.

Publisher

Penerbit Universiti Sains Malaysia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3