FINITE ELEMENT STUDY EVALUSTION OF GLASS FIBER REINFORCED FIXED PROSTHESES MADE OF ACRYLIC AND BIS-ACRYLIC RESIN MATERIALS

Author:

Petrikas Oleg1,Trapeznikov Dmitriy1,Kostin Igor1,Bulanov Vitaliy1

Affiliation:

1. Tver State Medical University

Abstract

The use of interim (provisional) prostheses is an obligate stage of modern dental practice. The problem of provisional bridges recognized by most experts is their use under heavy occlusal stress due to the possibility of their fracture. The development of a simple method of reinforcing provisional of prostheses during a clinical appointment that does not require special equipment is an urgent scientific and practical task. Objectives. The goal of this study was to evaluate the stress distribution in fiberglass reinforced and non-reinforced short-span and long-span provisional bridges according to different acrylic and bis-acrylic resin. Methodology. For this purpose, four finite element models were developed to reproduce the properties of prosthetic materials and hard dental tissues (Young’s modulus, Poisson’s ratio, hardness). Each model was subjected to a vertical load of 100 N applied to the middle of the bridge. Calculations were carried out in APM 3D Studio, and the results obtained were monitored in Ansys 12.2. The results obtained were displayed on the monitor screen, printed and analyzed. Results. Stress distribution pattern for an acrylic non-reinforced short-span bridge (model 1) showed the highest stress (4.2–5.2 n/mm2) in the area of the occlusal surface. Stress distribution pattern for an acrylic non-reinforced long-span bridge (model 2) showed the highest stress (11.4–12.3 n/mm2) both in the load zone and in the cervical zones of the connector facing the defect. Stress distribution pattern for acrylic reinforced long-span bridge (model 3) showed the highest stress (10.5–12.0 n/mm2) in the area where the fiber reinforcing tape is located deep in the bridge. Stress distribution pattern for bis-acrylic reinforced long-span bridge (model 4) showed the highest stress (9.8–10.5 n/mm2) observed both in the area where the glass fiber reinforcing tape is located and on the occlusal surface. Conclusion. Finite element analysis confirmed the feasibility of fiberglass reinforcement of long-span provisional bridges made of acrylic or bis-acrylic resin.

Publisher

TIRAZH Publishing House

Reference11 articles.

1. Sanz-Martín I, Encalada C, Sanz-Sánchez I, Aracil J, Sanz M. Soft tissue augmentation at immediate implants using a novel xenogeneic collagen matrix in conjunction with immediate provisional restorations: A prospective case series. Clin Implant Dent Relat Res. 2019;21(1):145-153. DOI: 10.1111/cid.12696. PMID: 30508313., Sanz-Martín I, Encalada C, Sanz-Sánchez I, Aracil J, Sanz M. Soft tissue augmentation at immediate implants using a novel xenogeneic collagen matrix in conjunction with immediate provisional restorations: A prospective case series. Clin Implant Dent Relat Res. 2019;21(1):145-153. DOI: 10.1111/cid.12696. PMID: 30508313.

2. Yao JW, Wang HL. Assessment of Peri-implant Soft Tissue Adaptive Pressure and Time After Provisional Restorations. Int J Periodontics Restorative Dent. 2019;39(6):809-815. DOI: 10.11607/prd.4063. PMID: 31613941., Yao JW, Wang HL. Assessment of Peri-implant Soft Tissue Adaptive Pressure and Time After Provisional Restorations. Int J Periodontics Restorative Dent. 2019;39(6):809-815. DOI: 10.11607/prd.4063. PMID: 31613941.

3. James Field 1, Robert Wassell //Br Dent J. 2023;234(11):805-809. doi: 10.1038/s41415-023-5974-7. Provisional restorations (Part 1) PMID: 37291303 DOI: 10.1038/s41415-023-5974-7, James Field 1, Robert Wassell //Br Dent J. 2023;234(11):805-809. doi: 10.1038/s41415-023-5974-7. Provisional restorations (Part 1) PMID: 37291303 DOI: 10.1038/s41415-023-5974-7

4. Psarri C, Kourtis S. Effect of fiber-reinforcement on the strength of polymer materials for provisional restorations: An in vitro study. J Esthet Restor Dent. 2020;32(4):433-440. DOI: 10.1111/jerd.12586 PMID: 32274901. DOI: 10.1111/jerd.12386, Psarri C, Kourtis S. Effect of fiber-reinforcement on the strength of polymer materials for provisional restorations: An in vitro study. J Esthet Restor Dent. 2020;32(4):433-440. DOI: 10.1111/jerd.12586 PMID: 32274901. DOI: 10.1111/jerd.12386

5. Hamza TA, Rosenstiel SF, Elhosary MM, Ibraheem RM. The effect of fiber reinforcement on the fracture toughness and flexural strength of provisional restorative resins. // J Prosthet Dent. 2004;91(3):258-64. DOI: 10.1016/j.prosdent.2004.01.005, Hamza TA, Rosenstiel SF, Elhosary MM, Ibraheem RM. The effect of fiber reinforcement on the fracture toughness and flexural strength of provisional restorative resins. // J Prosthet Dent. 2004;91(3):258-64. DOI: 10.1016/j.prosdent.2004.01.005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3