Publisher
Division of Functional Equations, The Mathematical Society of Japan (JST)
Subject
Geometry and Topology,Algebra and Number Theory,Analysis
Reference18 articles.
1. [1] Diaconis, P. and Griffiths, R. C., An introduction to multivariate Krawtchouk polynomials and their applications, J. Stat. Plan. Inference, 154 (2014), 39-53.
2. [2] Dunkl, C. F., A Krawtchouk polynomial addition theorem and wreath product of symmetric groups, Indiana Univ. Math. J., 25 (1976), 335-358.
3. [3] Folland, G. B., A Course in Abstract Harmonic Analysis, CRC Press 43, Boca Raton Ann Arbor, London-Tokyo, 1995.
4. [4] Griffiths, R. C., Orthogonal polynomials on the multinomial distribution, Austral. J. Statist., 13 (1971), 27-35.
5. [5] Griffiths, R. C., Multivariate Krawtchouk polynomials and composition birth and death processes, Symmetry, 8 (2016), 33-52.