Modelling seasonal and intraseasonal variations of circulation,temperature, salinity and sea level in the Bellingshausen Seaand on the Antarctic Peninsula shelf

Author:

Brovchenko I.ORCID, ,Maderich V.ORCID,Тerletska К.ORCID,Bezhenar A.ORCID, , ,

Abstract

The objective of the study is to simulate using numerical methods the seasonal and intraseasonal variations of circula-tion, sea level, temperature and salinity in the Bellingshausen Sea and on the shelf of the western part of the Antarctic Penin-sula (WAP). The Semi-implicit Cross-scale Hydroscience Integrated System Model with an unstructured triangular horizontal grid and a vertical local sigma coordinate system and ice dynamic-thermodynamic Finite-Element Sea Ice Model were applied. Heat, momentum and salt fluxes were set on the ocean surface using the ERA5 reanalysis data. At the open boundaries, the vertical distribution of temperature and salinity was determined according to the COPERNICUS reanalysis. At the western open boundary of the computational domain, the vertical distribution of velocity of currents from COPERNICUS was also specified, whereas at the open eastern boundary the level deviations were specified. Time variability analysis of sea level wasperformed using wavelet analysis. The results of modelling of the sea level, temperature, and salinity fields for 2014–2015 were compared with the available observational data on the shelf of the WAP, including data from the Ukrainian Antarctic Expedition. The simulated horizontal and vertical distributions of the subsurface layer with minimum of potential temperature Tmin (Winter Water) are given. The depth of the Tmin varies in the range of 10–100 m increasing to the north. The values of minimum of po-tential temperature Tmin also increase to the north from –1.8 to 1.2 °C. The intraseasonal oscillations of sea level computed by the model for 2014—2015 were analysed together with data of observations at the tidal stations Faraday/Akademik Vernadsky and Rothera located at the coast of WAP. In the range 1–150 days the largest amplitudes of the level scalegrams were found for a period of approximately 100 days in 2014 and 120 days in 2015 at both stations. The largest amplitudes of modelled level scale-grams were observed with a period of approximately 88 days in 2014 and 80 days in 2015 at both stations. The largest amplitudesof scalegrams for Antarctic Oscillation (AAO) were found for a period of 105 days in 2014 and 123 days in 2015. The corresponding correlation coefficients between observed sea level scalegrams and AAO for 2014 were 0.84 and 0.86, respectively, whereas for 2015 they were 0.87 and 0.90, respectively. It was concluded that the relationship between intraseasonal processes in the ocean in West Antarctica and AAO existed at a time scale of about 100 days.

Publisher

State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3