Strength analysis of prestressed vertical cylindrical steel oil tanks under operational and dynamic loads

Author:

Tursunkululy TimurORCID,Zhangabay NurlanORCID,Avramov KonstantinORCID,Chernobryvko MarynaORCID,Suleimenov UlanbatorORCID,Utelbayeva AkmaralORCID,Duissenbekov BolatORCID,Aikozov YermuratORCID,Dauitbek BakdauletORCID,Abdimanat ZhuldyzORCID

Abstract

This paper reports a study into the effect of the winding type on the stressed-strained state of the wall of a steel cylindrical tank filled with oil to the predefined level. The shapes of free oscillations of oil in the tank and the effect of the winding type on the natural frequencies of the structure were analyzed. Stress in the tank wall was estimated on the basis of finite-element simulation of the deformation of a three-dimensional structural model under the influence of distributed oil pressure on the inner surface of the wall and stresses on the outer surface of the wall. The stresses were induced by the winding of various types, taking into consideration the level of oil loading, the winding step of the winding, and the mechanical characteristics of the thread. The stressed-strained state of a cylindrical tank with winding was investigated at its full filling with oil, half-filling with oil, and without oil. Three winding options were simulated: single, double, and triple intervals. Two types of winding were considered: made from high-strength steel wire and made from composite thread. It was established that when winding the tank wall with steel wire at a triple interval, the stress in the structure does not exceed 34.2 % of the yield strength. At the same time, the height of oil loading does not significantly affect its strength. Applying a composite thread leads to an increase in the stress of up to 47.2 % of the yield strength but makes it possible to reduce the mass of the tank with winding. When winding with a composite thread at a triple interval, the mass of the structure increases by only 3.6 %. The results reported here make it possible to effectively use pre-stress in order to improve the strength and dynamic characteristics of the studied structures, taking into consideration their windings made of different materials

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3