Pseudo-random number generator based on linear congruence and delayed Fibonacci method

Author:

Cybulski Radosław

Abstract

Pseudo-random number generation techniques are an essential tool to correctly test machine learning processes. The methodologies are many, but also the possibilities to combine them in a new way are plenty. Thus, there is a chance to create mechanisms potentially useful in new and better generators. In this paper, we present a new pseudo-random number generator based on a hybrid of two existing generators - a linear congruential method and a delayed Fibonacci technique. We demonstrate the implementation of the generator by checking its correctness and properties using chi-square, Kolmogorov and TestU01.1.2.3 tests and we apply the Monte Carlo Cross Validation method in classification context to test the performance of the generator in practice.

Publisher

Uniwersytet Warminsko-Mazurski

Reference14 articles.

1. William Stallings: Kryptografia i bezpieczeństwo sieci komputerowych – matematyka szyfrów i techniki

2. kryptologii, Helion, 2012.

3. https://asecuritysite.com/encryption/fab

4. Piotr Sulewski, Porównanie generatorów liczb pseudolosowych, 2019, Polska.

5. Box G. E. P., Muller M. E. (1958). A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29(2), 610-611.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combined Pseudo-Random Sequence Generator for Cybersecurity;Sensors;2022-12-11

2. Modify Linear Congruent Generator Algorithms Using Inverse Elements of Modulo Multiplication for Randomizing Exams;2022 4th International Conference on Cybernetics and Intelligent System (ICORIS);2022-10-08

3. Creating One Time Virtual Encrypted Identification Number at The ATM;2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2022-06-09

4. Development of Additive Fibonacci Generators with Improved Characteristics for Cybersecurity Needs;Applied Sciences;2022-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3