Abstract
Pseudo-random number generation techniques are an essential tool to correctly test machine learning processes. The methodologies are many, but also the possibilities to combine them in a new way are plenty. Thus, there is a chance to create mechanisms potentially useful in new and better generators. In this paper, we present a new pseudo-random number generator based on a hybrid of two existing generators - a linear congruential method and a delayed Fibonacci technique. We demonstrate the implementation of the generator by checking its correctness and properties using chi-square, Kolmogorov and TestU01.1.2.3 tests and we apply the Monte Carlo Cross Validation method in classification context to test the performance of the generator in practice.
Publisher
Uniwersytet Warminsko-Mazurski
Reference14 articles.
1. William Stallings: Kryptografia i bezpieczeństwo sieci komputerowych – matematyka szyfrów i techniki
2. kryptologii, Helion, 2012.
3. https://asecuritysite.com/encryption/fab
4. Piotr Sulewski, Porównanie generatorów liczb pseudolosowych, 2019, Polska.
5. Box G. E. P., Muller M. E. (1958). A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29(2), 610-611.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献