ON THE OPTIMAL DISCRETIZATION OF THE SOLUTIONPOISSON’S EQUATION

Author:

Utessov AdilzhanORCID, ,Shanauov RuslanORCID

Abstract

The paper studies the problem of discretizing the solution of the Poisson equation with the right hand side f belonging to the multidimensional periodic Sobolev class. The research methodology is based on considering the problem of discretizing the solution of the Poisson equation as one of the concretizations of the general problem of optimal recovery of the operator Tf and using well known statements of approximation theory. Within the framework of this general optimal recovery problem, we first estimate from above the smallest discretization error N of the solution of the Poisson equation in the Hilbert metric using the discretization operator (l(N) , N) constructed from a finite set of Fourier coefficients of the function f. A lower estimate, coinciding in order with the upper estimate, for the smallest error N was obtained by involving all linear functionals defined on the multidimensional Sobolev class. It should be noted that the optimal discretization operator (l(N) , N) better approximates the solution under consideration in the Hilbert metric than any discretization operator constructed from values f at given points. Poisson’s equation is an elliptic partial differential equation and describes many physical phenomena such as electrostatic field, stationary temperature field, pressure field and velocity potential field in hydrodynamics. Therefore, the relevance of the research conducted here is beyond doubt.

Publisher

al-Farabi Kazakh National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3