To what extent do physiological tolerances determine elevational range limits of mammals?

Author:

Storz Jay F.1ORCID,Scott Graham R.2ORCID

Affiliation:

1. School of Biological Sciences University of Nebraska Lincoln NE USA

2. Department of Biology McMaster University Hamilton ON Canada

Abstract

AbstractA key question in biology concerns the extent to which distributional range limits of species are determined by intrinsic limits of physiological tolerance. Here, we use common‐garden data for wild rodents to assess whether species with higher elevational range limits typically have higher thermogenic capacities in comparison to closely related lowland species. Among South American leaf‐eared mice (genus Phyllotis), mean thermogenic performance is higher in species with higher elevational range limits, but there is little among‐species variation in the magnitude of plasticity in this trait. In the North American rodent genus Peromyscus, highland deer mice (Peromyscus maniculatus) have greater thermogenic maximal oxygen uptake () than lowland white‐footed mice (Peromyscus leucopus) at a level of hypoxia that matches the upper elevational range limit of the former species. In highland deer mice, the enhanced thermogenic in hypoxia is attributable to a combination of evolved and plastic changes in physiological pathways that govern the transport and utilization of O2 and metabolic substrates. Experiments with Peromyscus mice also demonstrate that exposure to hypoxia during different stages of development elicits plastic changes in cardiorespiratory traits that improve thermogenic via distinct physiological mechanisms. Evolved differences in thermogenic capacity provide clues about why some species are able to persist in higher‐elevation habitats that lie slightly beyond the tolerable limits of other species. Such differences in environmental tolerance also suggest why some species might be more vulnerable to climate change than others. image

Funder

National Institutes of Health

National Science Foundation

National Geographic Society

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3