Resistance training diminishes mitochondrial adaptations to subsequent endurance training in healthy untrained men

Author:

Mesquita Paulo H. C.1,Godwin Joshua S.1,Ruple Bradley A.1,Sexton Casey L.1,McIntosh Mason C.1,Mueller Breanna J.1,Osburn Shelby C.1,Mobley C. Brooks1,Libardi Cleiton A.2ORCID,Young Kaelin C.3,Gladden L. Bruce1ORCID,Roberts Michael D.14ORCID,Kavazis Andreas N.1ORCID

Affiliation:

1. School of Kinesiology Auburn University Auburn AL USA

2. Department of Physical Education Federal University of São Carlos São Carlos Brazil

3. Biomedical Sciences Pacific Northwest University of Health Sciences Yakima WA USA

4. Edward Via College of Osteopathic Medicine Auburn AL USA

Abstract

AbstractWe investigated the effects of performing a period of resistance training (RT) on the performance and molecular adaptations to a subsequent period of endurance training (ET). Twenty‐five young adults were divided into an RT+ET group (n = 13), which underwent 7 weeks of RT followed by 7 weeks of ET, and an ET‐only group (n = 12), which performed 7 weeks of ET. Body composition, endurance performance and muscle biopsies were collected before RT (T1, baseline for RT+ET), before ET (T2, after RT for RT+ET and baseline for ET) and after ET (T3). Immunohistochemistry was performed to determine fibre cross‐sectional area (fCSA), myonuclear content, myonuclear domain size, satellite cell number and mitochondrial content. Western blots were used to quantify markers of mitochondrial remodelling. Citrate synthase activity and markers of ribosome content were also investigated. RT improved body composition and strength, increased vastus lateralis thickness, mixed and type II fCSA, myonuclear number, markers of ribosome content, and satellite cell content (P < 0.050). In response to ET, both groups similarly decreased body fat percentage (P < 0.0001) and improved endurance performance (e.g. , and speed at which the onset of blood lactate accumulation occurred, P < 0.0001). Levels of mitochondrial complexes I–IV in the ET‐only group increased 32–66%, while those in the RT+ET group increased 1–11% (time, P < 0.050). Additionally, mixed fibre relative mitochondrial content increased 15% in the ET‐only group but decreased 13% in the RT+ET group (interaction, P = 0.043). In conclusion, RT performed prior to ET had no additional benefits to ET adaptations. Moreover, prior RT seemed to impair mitochondrial adaptations to ET. imageKey points Resistance training is largely underappreciated as a method to improve endurance performance, despite reports showing it may improve mitochondrial function. Although several concurrent training studies are available, in this study we investigated the effects of performing a period of resistance training on the performance and molecular adaptations to subsequent endurance training. Prior resistance training did not improve endurance performance and impaired most mitochondrial adaptations to subsequent endurance training, but this effect may have been a result of detraining from resistance training.

Funder

National Strength and Conditioning Association

National Institutes of Health

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3