Affiliation:
1. Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health University of Basel Basel Switzerland
2. Exercise Physiology Lab, Institute of Human Movement Sciences and Sport ETH Zurich Zurich Switzerland
3. Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical University of Graz Graz Austria
4. Foeldiklinik GmbH&Co KG Hinterzarten Germany
5. Department of Clinical Research University Hospital Basel Basel Switzerland
6. Zurich Center for Integrative Human Physiology (ZIHP) University of Zurich Zurich Switzerland
Abstract
AbstractLong‐term, intense endurance exercise training can occasionally induce endothelial micro‐damage and cardiac fibrosis. The underlying mechanisms are incompletely understood. Twenty healthy, well‐trained male participants (10 runners and 10 cyclists) performed a strenuous high‐intensity interval training (HIIT) session matched by age, height, weight and maximal oxygen consumption. We assessed the acute exercise response of novel cardiac biomarkers of fibrosis [e.g., galectin‐3 (Gal‐3) and soluble suppression of tumorigenicity 2 (sST2)] per exercise modality and their relationship with haemodynamic contributors, such as preload, afterload and cardiac contractility index (CTi), in addition to endothelial damage by sustained activation and shedding of endothelial cells (ECs). Serum Gal‐3 and sST2 concentrations were investigated by enzyme‐linked immunosorbent assays; haemodynamics were analysed via impedance plethysmography and circulating ECs by flow cytometry. The Gal‐3 and sST2 concentrations and ECs were elevated after exercise (P < 0.001), without interaction between exercise modalities. Circulating Gal‐3 and sST2 concentrations both showed a positive relationship with ECs (rrm = 0.68, P = 0.001 and rrm = 0.57, P = 0.010, respectively, both n = 18). The EC association with Gal‐3 was significant only in cyclists, but equally strong for both modalities. Gal‐3 was also related to exercise‐induced CTi (rrm = 0.57, P = 0.011, n = 18). Cardiac wall stress is increased after an acute HIIT session but does not differ between exercise modalities. Exercise‐released Gal‐3 from cardiac macrophages could very probably drive systemic endothelial damage, based on an enhanced CTi. The importance of acute exercise‐induced vascular resistances and cardiac contractility for the release of fibrotic biomarkers and any long‐term pathological endothelial adaptation should be investigated further, also relative to the exercise modality.
Subject
Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献