Circulating Gal‐3 and sST2 are associated with acute exercise‐induced sustained endothelial activation: Possible relevance for fibrosis development?

Author:

Kröpfl Julia M.1ORCID,Beltrami Fernando G.2ORCID,Gruber Hans‐Jürgen3,Schmidt‐Trucksäss Arno1ORCID,Dieterle Thomas45,Spengler Christina M.26ORCID

Affiliation:

1. Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health University of Basel Basel Switzerland

2. Exercise Physiology Lab, Institute of Human Movement Sciences and Sport ETH Zurich Zurich Switzerland

3. Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical University of Graz Graz Austria

4. Foeldiklinik GmbH&Co KG Hinterzarten Germany

5. Department of Clinical Research University Hospital Basel Basel Switzerland

6. Zurich Center for Integrative Human Physiology (ZIHP) University of Zurich Zurich Switzerland

Abstract

AbstractLong‐term, intense endurance exercise training can occasionally induce endothelial micro‐damage and cardiac fibrosis. The underlying mechanisms are incompletely understood. Twenty healthy, well‐trained male participants (10 runners and 10 cyclists) performed a strenuous high‐intensity interval training (HIIT) session matched by age, height, weight and maximal oxygen consumption. We assessed the acute exercise response of novel cardiac biomarkers of fibrosis [e.g., galectin‐3 (Gal‐3) and soluble suppression of tumorigenicity 2 (sST2)] per exercise modality and their relationship with haemodynamic contributors, such as preload, afterload and cardiac contractility index (CTi), in addition to endothelial damage by sustained activation and shedding of endothelial cells (ECs). Serum Gal‐3 and sST2 concentrations were investigated by enzyme‐linked immunosorbent assays; haemodynamics were analysed via impedance plethysmography and circulating ECs by flow cytometry. The Gal‐3 and sST2 concentrations and ECs were elevated after exercise (P < 0.001), without interaction between exercise modalities. Circulating Gal‐3 and sST2 concentrations both showed a positive relationship with ECs (rrm = 0.68, P = 0.001 and rrm = 0.57, P = 0.010, respectively, both n = 18). The EC association with Gal‐3 was significant only in cyclists, but equally strong for both modalities. Gal‐3 was also related to exercise‐induced CTi (rrm = 0.57, P = 0.011, n = 18). Cardiac wall stress is increased after an acute HIIT session but does not differ between exercise modalities. Exercise‐released Gal‐3 from cardiac macrophages could very probably drive systemic endothelial damage, based on an enhanced CTi. The importance of acute exercise‐induced vascular resistances and cardiac contractility for the release of fibrotic biomarkers and any long‐term pathological endothelial adaptation should be investigated further, also relative to the exercise modality.

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3