Active glucose transport varies by small intestinal region and oestrous cycle stage in mice

Author:

Overduin T. Sebastian123,Wardill Hannah R.14,Young Richard L.35,Page Amanda J.13,Gatford Kathryn L.123ORCID

Affiliation:

1. School of Biomedicine University of Adelaide Adelaide South Australia Australia

2. Robinson Research Institute University of Adelaide Adelaide South Australia Australia

3. Lifelong Health Theme South Australian Health and Medical Research Institute Adelaide South Australia Australia

4. Precision Medicine Theme South Australian Health and Medical Research Institute Adelaide South Australia Australia

5. Adelaide Medical School University of Adelaide Adelaide South Australia Australia

Abstract

AbstractFood intake changes across the ovarian cycle in rodents and humans, with a nadir during the pre‐ovulatory phase and a peak during the luteal phase. However, it is unknown whether the rate of intestinal glucose absorption also changes. We therefore mounted small intestinal sections from C57BL/6 female mice (8–9 weeks old) in Ussing chambers and measured active ex vivo glucose transport via the change in short‐circuit current (∆Isc) induced by glucose. Tissue viability was confirmed by a positive ∆Isc response to 100 µM carbachol following each experiment. Active glucose transport, assessed after addition of 5, 10, 25 or 45 mM d‐glucose to the mucosal chamber, was highest at 45 mM glucose in the distal jejunum compared to duodenum and ileum (P < 0.01). Incubation with the sodium–glucose cotransporter 1 (SGLT1) inhibitor phlorizin reduced active glucose transport in a dose‐dependent manner in all regions (P < 0.01). Active glucose uptake induced by addition of 45 mM glucose to the mucosal chamber in the absence or presence of phlorizin was assessed in jejunum at each oestrous cycle stage (n = 9–10 mice per stage). Overall, active glucose uptake was lower at oestrus compared to pro‐oestrus (P = 0.025). This study establishes an ex vivo method to measure region‐specific glucose transport in the mouse small intestine. Our results provide the first direct evidence that SGLT1‐mediated glucose transport in the jejunum changes across the ovarian cycle. The mechanisms underlying these adaptations in nutrient absorption remain to be elucidated.

Funder

University of Adelaide

Hospital Research Foundation

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3