Oxidization resistance and sorption properties of oleogels as new-generation fatty systems

Author:

Nekrasov P.О., ,Tkachenko N.A.,Nekrasov О.P.,Gudz О.M.,Berezka T.O.,Molchenko S.M.,

Abstract

Fats as complex mixtures of acylglycerols with lipid and non-lipid substances are an integral part of human nutrition. The presence of acylglycerols of trans-isomers of fatty acids causes many cardiovascular diseases and metabolic disorders. A promising approach to solving the problem of minimizing the content of these undesirable compounds in food recipes is to create a new generation of fat systems, oleogels, which are the subject of this study. High-oleic sunflower oil was used as a dispersion medium of oleogels, which allows obtaining systems with increased resistance to oxidation, as opposed to the oils of traditional kinds. Sunflower seed wax and tocopherols are chosen as a dispersed phase of these fatty systems. The choice of these components was based on their properties to create a three-dimensional structure in oleogels with specified thermomechanical characteristics. Currently, there is a lack of information on the influence of the content of the dispersed phase on the technological parameters of oleogels, namely oxidative resistance and sorption properties. The purpose of the presented work was to study these features of oleogels and establish their dependences on their composition. To solve this problem, the yield surface method is used in the work. The unknown values of the parameter vector were determined by using regression analysis algorithms. Deviation functionality was minimized by finding the appropriate combinations of the experimental series of predictors. A mathematical model was developed which allows predicting oxidative stability and sorption properties of oleogels based on the data on their composition. The suitable mass fractions of the components of the dispersed phase of oleogels have been determined as follows: tocopherol content is 0.10–0.14 wt.% and the sunflower seed wax content is 1.8–4.0 wt.%. The results obtained can serve as a scientific basis for the development of technology for the industrial production of oleogels as new generation fatty systems.

Publisher

SHEI Ukrainian State University of Chemical Technology

Subject

Materials Chemistry,General Chemical Engineering,Environmental Chemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3