Author:
Koyano Y.,Kitahata H.,Mikhailov A. S.
Abstract
Abstract
A simple model of an active colloid consisting of dumbbell-shaped particles that cyclically change their length without propelling themselves is proposed and analyzed. At nanoscales, it represents an idealization for bacterial cytoplasm or for a biomembrane with active protein inclusions. Our numerical simulations demonstrate that non-equilibrium conformational activity of particles can strongly affect diffusion and structural relaxation: while a passive colloid behaves as a glass, it gets progressively fluidized when the activity is turned on. Qualitatively, this agrees with experimental results on optical tracking of probe particles in bacterial and yeast cells where metabolism-induced fluidization of cytoplasm was observed.
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献