Topological order of the Rys F-model and its breakdown in realistic square spin ice: Topological sectors of Faraday loops

Author:

Nisoli CristianoORCID

Abstract

Abstract Both the Rys F-model and antiferromagnetic square ice possess the same ordered, antiferromagnetic ground state, but the ordering transition is of second order in the latter, and of infinite order in the former. To tie this difference to topological properties and their breakdown, we introduce a Faraday lines representation where loops carry the energy and magnetization of the system. Because the F-model does not admit monopoles, its Faraday loops have distinct topological properties, absent in square ice, and which allow for a natural partition of its phase space into topological sectors. Then, the Néel temperature corresponds to a transition from topologically trivial to non-trivial Faraday loops. Because magnetization is a homotopy invariant of the Faraday loops, and it is zero for topologically trivial ones, the susceptibility is zero below a critical field. In square spin ice, instead, monopoles destroy the homotopy invariance and the parity distinction among loops, thus erasing this rich topological structure. Consequently, even trivial loops can be magnetized in square ice, and their susceptibility is never zero.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crystalline phases and devil's staircase in qubit spin ice;Physical Review Research;2023-11-27

2. Polymerization in magnetic metamaterials;Physical Review Research;2023-08-30

3. Topological kinetic crossover in a nanomagnet array;Science;2023-05-05

4. Approaching the Topological Low-Energy Physics of the F Model in a Two-Dimensional Magnetic Lattice;Physical Review Letters;2022-07-07

5. Some exactly solvable and tunable frustrated spin models;Physica A: Statistical Mechanics and its Applications;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3