Star-shaped patterns caused by colloidal aggregation during the spreading process of a droplet

Author:

Shimokawa Michiko,Kitahata Hiroyuki,Sakaguchi Hidetsugu

Abstract

Abstract In this study, we discovered that, when an acidic solution with a low surface tension spreads on the surface of a glycerol solution mixed with milk, a star-shaped pattern is spontaneously formed on the surface in the horizontal plane during the spreading process. We experimentally investigated the emergence of the star-shaped pattern caused by an interfacial instability by using glycerol and aqueous 2-methoxyethanol solutions, which are acidic solutions; we chose the viscosity of the glycerol solution and concentration of both solutions as free parameters. The result demonstrated that the star-shaped pattern emerged when the concentration of 2-methoxyethanol was high. We proposed a phenomenological model based on our experimental results, which explains the following three points: the spreading of the aqueous 2-methoxyethanol solution on the surface of the glycerol solution; colloidal aggregation of the milk protein colloids caused by the denaturation that occurs when mixed with 2-methoxyethanol; accumulation of the aggregates toward the dent regions of the moving interface by a sweeping effect. The model reproduced the star-shaped pattern, which was similar to the experimental one. Furthermore, the concentration of the 2-methoxyethanol solution and the viscosity of the glycerol solution were taken as control parameters in our experiments and were varied, and a phase diagram was obtained. The phase diagram was similar to that obtained from our experiments. The results suggest that the above three points are important for the formation of the star-shaped pattern.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3