Influence of humidity on the binding of stone fragments via capillary bridges

Author:

Persson B. N. J.

Abstract

Abstract We study the humidity dependency of the adhesion (or pull-off) force between granite fragments and a silica glass plate. The particles bind to the glass plate via capillary bridges. The granite particles are produced by cracking a granite stone in a mortar and have self-affine fractal surface roughness. Theory shows that the surface roughness results in an interaction force between stone fragments and the glass plate which is independent of the size of the particles, in contrast to the linear size dependency expected for particles with smooth surfaces. We measure the adhesion force by depositing the granite particle powder, with particle sizes ranging from mm to μm (or less), on the glass plate. By turning the glass plate upside-down all particles with a gravitational force larger than the adhesion force will fall off the glass plate. By studying the size (and hence the mass) of biggest still attached particles we obtained the adhesion force, which is found to be in good agreement with the theory prediction.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3