Abstract
Abstract
Bayesian chemotaxis is an information-based target search problem inspired by biological chemotaxis. It is defined by a decision strategy coupled to the dynamic estimation of target position from detections of signaling molecules. We extend the case of a point-like agent previously introduced (Vergassola et al., Nature (2007)), which establishes concentration sensing as the dominant contribution to information processing, to the case of a circle-shaped agent of small finite size. We identify gradient sensing and a Laplacian correction to concentration sensing as the two leading-order expansion terms in the expected entropy variation. Numerically, we find that the impact of gradient sensing is most relevant because it provides direct directional information to break symmetry in likelihood distributions, which are generally circle shaped by concentration sensing.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献