Liquid foam under simple shear: Local flows in the films

Author:

Poryles R.,Bussonnière A.,Schaub E.,Cantat I.ORCID

Abstract

Abstract Predicting the effective viscosity of a foam as a function of its bubble size, liquid fraction and chemical composition is still an open question. The confinement of the liquid phase between the bubbles is expected to strongly enhance the local deformation rates. However, these local deformations are induced by interfacial stresses, which are limited by the surface tension accessible range: above a critical bubble size and/or shear rate, it is impossible to shear the whole film separating the bubbles. In this paper, we investigate this large bubble regime by imposing a simple shear to a minimal foam made of five interconnected films. We present a new local deformation pattern, with a relaxation process lasting long after the motor stops, that we characterize for a large range of shear rate and for different foaming solutions. A direct evidence of the absence of shear during the relaxation has been obtained for one solution. At 10 s−1, this original large bubble regime should be relevant for foams with bubbles larger than 300 microns.

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3