Influence of anti-ferromagnetic ordering and electron correlation on the electronic structure of MnTiO3

Author:

Ali AsifORCID,Maurya R. K.,Bansal Sakshi,Reddy B. H.,Singh Ravi ShankarORCID

Abstract

Abstract Electron correlation and long-range magnetic ordering have a significant impact on the electronic structure and physical properties of solids. Here, we investigate the electronic structure of ilmenite MnTiO3 using room temperature photoemission spectroscopy and theoretical approaches within density functional theory (DFT), DFT+ U and DFT+dynamical mean-field theory (DMFT). Mn 2p (Ti 2p) core level photoemission spectra, confirming Mn2+ (Ti4+) oxidation state, exhibit multiple satellites which are very similar to that of MnO (TiO2), suggesting similar strength of various interactions in this system. Valence band spectra collected at different photon energies suggest dominant Mn 3d character in the highest occupied band with a wide insulating gap. DFT(+ U) correctly predicts the experimentally observed anti-ferromagnetic (AFM) insulating ground state for MnTiO3 where the requirement of a large U to reproduce the experimental values of magnetic moment and band gap signifies the importance of electron correlation. Magnetically disordered paramagnetic (PM) phase could be well captured within DFT+DMFT, which provides an excellent agreement for the experimental band gap, paramagnetic moment, valence band spectra as well as dominant Mn 3d character in the highest occupied band. The calculated spectral function remains largely unaffected and exhibits sharper features in the magnetically ordered AFM phase. We show that the electronic structure of MnTiO3 in both the PM and AFM phases can be accurately described within DFT+DMFT.

Funder

Department of Science and Technology India

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3