Transcriptomic Profiling of Plasma Extracellular Vesicles Enables Reliable Annotation of the Cancer-Specific Transcriptome and Molecular Subtype

Author:

Bahrambeigi Vahid12ORCID,Lee Jaewon J.1234ORCID,Branchi Vittorio12ORCID,Rajapakshe Kimal I.1ORCID,Xu Zhichao5ORCID,Kui Naishu5ORCID,Henry Jason T.6ORCID,Kun Wang7ORCID,Stephens Bret M.12ORCID,Dhebat Sarah12ORCID,Hurd Mark W.1ORCID,Sun Ryan5ORCID,Yang Peng89ORCID,Ruppin Eytan7ORCID,Wang Wenyi8ORCID,Kopetz Scott6ORCID,Maitra Anirban1210ORCID,Guerrero Paola A.12ORCID

Affiliation:

1. 1Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.

2. 2Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

3. 3Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

4. 4Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California.

5. 5Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.

6. 6Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

7. 7Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.

8. 8Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

9. 9Department of Statistics Rice University, Houston, Texas.

10. 10Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Abstract

Abstract Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predicted consensus molecular subtypes in patients with metastatic colorectal cancer. Analysis of plasma evRNA also enabled monitoring of changes in transcriptomic subtype under treatment selection pressure and identification of molecular pathways associated with recurrence. This approach also revealed expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of using transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to the identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling. Significance: The development of an approach to interrogate molecular subtypes, cancer-associated pathways, and differentially expressed genes through RNA sequencing of plasma extracellular vesicles lays the foundation for liquid biopsy–based longitudinal monitoring of patient tumor transcriptomes.

Funder

National Cancer Institute

Break Through Cancer

Publisher

American Association for Cancer Research (AACR)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3