WNK1 Interaction with KEAP1 Promotes NRF2 Stabilization to Enhance the Oxidative Stress Response in Hepatocellular Carcinoma

Author:

Li Li1ORCID,Xie Dacheng2ORCID,Yu Shijun1ORCID,Ma Muyuan3ORCID,Fan Kailing1ORCID,Chen Jingde1ORCID,Xiu Mengxi1ORCID,Xie Keping3ORCID,Li Yandong1ORCID,Gao Yong1ORCID

Affiliation:

1. Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China. 1

2. Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China. 2

3. Center for Pancreatic Cancer Research, The South China University of Technology, Guangzhou, China. 3

Abstract

Abstract Cellular oxidative stress plays a key role in the development and progression of hepatocellular carcinoma (HCC). A better understanding of the processes that regulate reactive oxygen species (ROS) homeostasis could uncover improved strategies for treating HCC. Herein, we identified protein kinase with-no-lysine kinase 1 (WNK1) as an antioxidative factor and therapeutic target in HCC. In human HCC, WNK1 expression was increased and correlated with poor patient prognosis. WNK1 knockdown significantly inhibited cell proliferation and xenograft tumor growth. Mechanistically, WNK1 competed with nuclear factor erythroid 2–related factor 2 (NRF2) for binding with the partial Kelch domain of Kelch-like ECH-associated protein 1 (KEAP1), reducing NRF2 ubiquitination and promoting NRF2 accumulation and nuclear translocation to increase antioxidant response. WNK1 silencing increased H2O2-induced apoptosis and inhibited cell growth by elevating ROS levels, which could be rescued by treatment with the antioxidant N-acetylcysteine and NRF2 activator tert-butylhydroquinone. Liver-specific WNK1 knockout mouse models of HCC substantiated that WNK1 promoted HCC development by regulating ROS levels. WNK463, an inhibitor of the WNK kinase family, suppressed HCC progression and altered the redox status. These findings suggest that WNK1 plays a critical role in HCC development and progression and that the WNK1-oxidative stress axis may be a promising therapeutic target for HCC. Significance: Inhibiting WNK1 induces NRF2 degradation and reduces the oxidative stress response to suppress hepatocellular carcinoma growth, indicating that targeting the WNK1–KEAP1–NRF2 axis is a potential strategy to treat liver cancer.

Funder

National Natural Science Foundation of China

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3