Comprehensive Analysis of Metabolic Isozyme Targets in Cancer

Author:

Marczyk Michal12ORCID,Gunasekharan Vignesh1,Casadevall David34ORCID,Qing Tao1,Foldi Julia1ORCID,Sehgal Raghav1,Shan Naing Lin1ORCID,Blenman Kim R.M.1ORCID,O'Meara Tess A.1ORCID,Umlauf Sheila5ORCID,Surovtseva Yulia V.5,Muthusamy Viswanathan6,Rinehart Jesse1ORCID,Perry Rachel J.1ORCID,Kibbey Richard1,Hatzis Christos1,Pusztai Lajos1ORCID

Affiliation:

1. Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.

2. Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland.

3. Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.

4. Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.

5. Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut.

6. Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut.

Abstract

Abstract Metabolic reprogramming is a hallmark of malignant transformation, and loss of isozyme diversity (LID) contributes to this process. Isozymes are distinct proteins that catalyze the same enzymatic reaction but can have different kinetic characteristics, subcellular localization, and tissue specificity. Cancer-dominant isozymes that catalyze rate-limiting reactions in critical metabolic processes represent potential therapeutic targets. Here, we examined the isozyme expression patterns of 1,319 enzymatic reactions in 14 cancer types and their matching normal tissues using The Cancer Genome Atlas mRNA expression data to identify isozymes that become cancer-dominant. Of the reactions analyzed, 357 demonstrated LID in at least one cancer type. Assessment of the expression patterns in over 600 cell lines in the Cancer Cell Line Encyclopedia showed that these reactions reflect cellular changes instead of differences in tissue composition; 50% of the LID-affected isozymes showed cancer-dominant expression in the corresponding cell lines. The functional importance of the cancer-dominant isozymes was assessed in genome-wide CRISPR and RNAi loss-of-function screens: 17% were critical for cell proliferation, indicating their potential as therapeutic targets. Lists of prioritized novel metabolic targets were developed for 14 cancer types; the most broadly shared and functionally validated target was acetyl-CoA carboxylase 1 (ACC1). Small molecule inhibition of ACC reduced breast cancer viability in vitro and suppressed tumor growth in cell line– and patient-derived xenografts in vivo. Evaluation of the effects of drug treatment revealed significant metabolic and transcriptional perturbations. Overall, this systematic analysis of isozyme expression patterns elucidates an important aspect of cancer metabolic plasticity and reveals putative metabolic vulnerabilities. Significance: This study exploits the loss of metabolic isozyme diversity common in cancer and reveals a rich pool of potential therapeutic targets that will allow the repurposing of existing inhibitors for anticancer therapy. See related commentary by Kehinde and Parker, p. 1695

Funder

Breast Cancer Research Foundation

Susan Komen Leadership

Lion Heart Foundation

ISCIII

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3