PDZ Proteins SCRIB and DLG1 Regulate Myeloma Cell Surface CD86 Expression, Growth, and Survival

Author:

Moser-Katz Tyler1,Gavile Catherine M.1,Barwick Benjamin G.1ORCID,Lee Kelvin P.2,Boise Lawrence H.1ORCID

Affiliation:

1. 1Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.

2. 2Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.

Abstract

AbstractDespite advances in the treatment of multiple myeloma in the past decades, the disease remains incurable, and understanding signals and molecules that can control myeloma growth and survival are important for the development of novel therapeutic strategies. One such molecule, CD86, regulates multiple myeloma cell survival via its interaction with CD28 and signaling through its cytoplasmic tail. Although the CD86 cytoplasmic tail has been shown to be involved in drug resistance and can induce molecular changes in multiple myeloma cells, its function has been largely unexplored. Here, we show that CD86 cytoplasmic tail has a role in trafficking CD86 to the cell surface. This is due in part to a PDZ-binding motif at its C-terminus which is important for proper trafficking from the Golgi apparatus. BioID analysis revealed 10 PDZ domain–containing proteins proximal to CD86 cytoplasmic tail in myeloma cells. Among them, we found the planar cell polarity proteins, SCRIB and DLG1, are important for proper CD86 surface expression and the growth and survival of myeloma cells. These findings indicate a mechanism by which myeloma cells confer cellular survival and drug resistance and indicate a possible motif to target for therapeutic gain.Implications:These findings demonstrate the importance of proper trafficking of CD86 to the cell surface in myeloma cell survival and may provide a new therapeutic target in this disease.

Funder

Winship Cancer Institute of Emory University

NIH NCI

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3