Intrinsic Epigenetic State of Primary Osteosarcoma Drives Metastasis

Author:

Singh Irtisha123ORCID,Rainusso Nino4ORCID,Kurenbekova Lyazat4ORCID,Nirala Bikesh K.5ORCID,Dou Juan5ORCID,Muruganandham Abhinaya2ORCID,Yustein Jason T.5ORCID

Affiliation:

1. Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas. 1

2. Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas. 2

3. Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas. 3

4. Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas. 4

5. Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia. 5

Abstract

Abstract Osteosarcoma is the most common primary malignant bone tumor affecting the pediatric population with a high potential to metastasize. However, insights into the molecular features enabling its metastatic potential are limited. We mapped the active chromatin landscapes of osteosarcoma tumors by integrating histone H3 lysine–acetylated chromatin state (n = 13), chromatin accessibility profiles (n = 11), and gene expression (n = 13) to understand the differences in their active chromatin profiles and their impact on molecular mechanisms driving the malignant phenotypes. Primary osteosarcoma tumors from patients with metastasis (primary met) have a distinct active chromatin landscape compared with those without metastasis (localized). This difference shapes the transcriptional profile of osteosarcoma. We identified novel candidate genes, including PPP1R1B, PREX1, and IGF2BP1, that exhibit increased chromatin activity in primary met. Loss of PREX1 in primary met osteosarcoma cells significantly diminishes osteosarcoma proliferation, invasion, migration, and colony formation capacity. Differential chromatin activity in primary met is associated with genes regulating cytoskeleton organization, cellular adhesion, and extracellular matrix, suggesting their role in facilitating osteosarcoma metastasis. Chromatin profiling of tumors from metastatic lung lesions shows increased chromatin activity in genes involved in cell migration and Wnt pathway. These data demonstrate that metastatic potential is intrinsically present in primary met tumors, with cellular chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal site. Implications: Our study demonstrates that metastatic potential is intrinsic to primary metastatic osteosarcoma tumors, with chromatin profiles further adapting for successful dissemination, migration, and colonization at the distal metastatic site.

Funder

National Institute of Neurological Disorders and Stroke

Cancer Prevention and Research Institute of Texas

National Institute of Biomedical Imaging and Bioengineering

National Cancer Institute

National Institute of Dental and Craniofacial Research

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3