Down-Regulation of S100C Is Associated with Bladder Cancer Progression and Poor Survival

Author:

Memon Ashfaque Ahmed1,Sorensen Boe Sandahl1,Meldgaard Peter2,Fokdal Lars2,Thykjaer Thomas3,Nexo Ebba1

Affiliation:

1. 1Clinical Biochemistry and Departments of

2. 2Oncology, AS, Aarhus University Hospital and

3. 3Department of Clinical Biochemistry, Skejby Hospital, Aarhus, Denmark

Abstract

Abstract Purpose: The goal of this study was to identify proteins down-regulated during bladder cancer progression. Experimental design: By using comparative proteome analysis and measurement of mRNA, we found a significant down-regulation of S100C, a member of the S100 family of proteins, in T24 (grade 3) as compared with RT4 (grade 1) bladder cancer cell lines. Moreover, quantification of the mRNA level revealed that decreased expression of the protein reflects a low level of transcription of the S100C gene. Based on this observation, we quantified the S100C mRNA expression level with real-time PCR in bladder cancer biopsy samples obtained from 88 patients followed for a median of 23 months (range, 1-97 months). Results: We found a significantly lower mRNA expression of S100C in connective tissue invasive tumors (T1, P = 0.0030) and muscle invasive tumors [(T2-T4), P < 0.0001] compared with superficial tumors (Ta). A negative correlation between S100C and histopathologic grade (P = 0.0003) was also observed. Furthermore, the papillary type showed higher expression of S100C than did the solid type of the tumor (P < 0.0001). Importantly, we found that loss of S100C was associated with survival in bladder cancer patients (P = 0.0006). Conclusions: Our results show that low expression of S100C is associated with poor survival in patients with bladder cancer. Furthermore, loss of S100C in T1 as compared with Ta stage tumors emphasize that S100C expression is suppressed early during bladder cancer development.

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3