Noninvasive Lung Cancer Subtype Classification Using Tumor-Derived Signatures and cfDNA Methylome

Author:

Li Shuo1ORCID,Li Wenyuan1,Liu Bin23ORCID,Krysan Kostyantyn234ORCID,Dubinett Steven M.12345ORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California. 1

2. Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California. 2

3. Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California. 3

4. VA Greater Los Angeles Health Care System, Los Angeles, California. 4

5. Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California. 5

Abstract

Abstract Accurate diagnosis of lung cancer is important for treatment decision-making. Tumor biopsy and histologic examination are the standard for determining histologic lung cancer subtypes. Liquid biopsy, particularly cell-free DNA (cfDNA), has recently shown promising results in cancer detection and classification. In this study, we investigate the potential of cfDNA methylome for the noninvasive classification of lung cancer histologic subtypes. We focused on the two most prevalent lung cancer subtypes, lung adenocarcinoma and lung squamous cell carcinoma. Using a fragment-based marker discovery approach, we identified robust subtype-specific methylation markers from tumor samples. These markers were successfully validated in independent cohorts and associated with subtype-specific transcriptional activity. Leveraging these markers, we constructed a subtype classification model using cfDNA methylation profiles, achieving an AUC of 0.808 in cross-validation and an AUC of 0.747 in the independent validation. Tumor copy-number alterations inferred from cfDNA methylome analysis revealed potential for treatment selection. In summary, our study demonstrates the potential of cfDNA methylome analysis for noninvasive lung cancer subtyping, offering insights for cancer monitoring and early detection. Significance: This study explores the use of cfDNA methylomes for the classification of lung cancer subtypes, vital for effective treatment. By identifying specific methylation markers in tumor tissues, we developed a robust classification model achieving high accuracy for noninvasive subtype detection. This cfDNA methylome approach offers promising avenues for early detection and monitoring.

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3