Biexponential decrease of PAR in coastal waters (Northern Adriatic)

Author:

Umer Borut1,Malačič Vlado2

Affiliation:

1. National Institute of Biology, Marine Biology Station, Piran, Slovenia ; Jožef Stefan international Postgraduate School, Ljubljana, Slovenia

2. National Institute of Biology, Marine Biology Station, Piran, Slovenia

Abstract

The attenuation coefficients of photosynthetically active radiation (PAR) were extracted from the vertical profiles of PAR in coastal waters (the Gulf of Trieste, Northern Adriatic). The vertical profiles were collected roughly twice per month from July 2011 to December 2015, and the PAR values just above the sea surface were compared with the PAR data measured on a buoy.This research supports the nonlinear fit with the biexponential expression for the dependence of PAR with depth, yielding a much better match with the data than the fit with a mono-exponential expression. However, another reasoning for biexponential attenuation is because it functions as a solution for a homogeneous differential equation of a second order. The method for estimating the water type is offered with an analysis of the attenuation coefficients of PAR. It was found that for a particular location (the Gulf of Trieste), the attenuation coefficient in a mono-exponential decrease of PAR is 0.19-0.21 m-1, while for a biexponential decrease of PAR, the coefficient of the long-range attenuation is 0.12-0.14 m-1 and that of short-range attenuation is 0.8-0.9 m-1. This leads to the conclusion that most water columns match coastal water type 1, while the surface layer is represented by coastal water types 7 or 9. From the estimate of the water types, the coefficients of downward irradiation were inferred as 0.19 m-1∓0.01 m-1 (long-range attenua-tion) and 3.0 m-1∓0.7 m-1 (short-range attenuation). These coefficients can determine the heat source inside the water column.

Publisher

University of Zagreb, Faculty of Science, Department of Geophysics

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3