Selection of Surrogates For Drought Resilience In Temperate Maize (Zea Mays L.)

Author:

Yousuf Nida,Dar Sher Ahmad,Dar Zahoor Ahmad,Sofi Parvaze Ahmad,Lone Aijaz Ahmad,Shikari Asif Bashir,Gulzar Shazia,Waza Showkat Ahmad

Abstract

Drought is one of the major constraints affecting the economic yield of maize worldwide. Present study was carried out to select the surrogates for drought resilience in 70 maize landraces collected from diverse agro-ecologies of Kashmir Himalayas. Significant variation was observed among the genotypes for all the traits under well-watered and drought conditions. Due to the drought stress, the highest reduction was observed for the canopy temperature (175.18%), followed by root volume (69.77%), top root biomass (69.1%), shoot biomass (67.2%), bottom root biomass (53.75%), chlorophyll content (22.85 SPAD units) and shoot height (21.63%). The reduction was also recorded for other traits like shoot to total biomass ratio (2.70%), relative water content (13.42 %), cell membrane stability (17.33%) and rooting depth (19.86%). Root to total biomass ratio was found to increase in response to drought stress (7.69%). A positive significant correlation was observed between grain yield and root volume, top root biomass, bottom root biomass, rooting depth, root to total biomass, chlorophyll content, cell membrane stability, canopy temperature depression and relative water content. These can be used for selection of appropriate surrogates of drought tolerant genotypes. The landraces viz., KD-L35, KD-L37, KD-L19, KD-L23, KD-L17, KD-L21, KD-L46, KD-L43, KD-L29, KD-L25 and KD-L38 showed promising performance under drought for most of the surrogates identified. The landraces selected can be used as sources of novel and/or favourable alleles to breed for climate resilient maize cultivars. Bangladesh J. Bot. 51(3): 487-498, 2022 (September)

Publisher

Bangladesh Journals Online (JOL)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3