Биоморфный нейропроцессор – прототип компьютера нового поколения, являющегося носителем искусственного интеллекта. Часть 2

Author:

Удовиченко С.Ю.ORCID,Писарев А.Д.ORCID,Бусыгин А.Н.ORCID,Бобылев А.Н.ORCID

Abstract

Во входном и выходном устройствах биоморфного нейропроцессора происходят первичная и конечная обработка информации. Представлены результаты по сжатию на входе цифровой информации и ее кодированию в импульсы, а также по декодированию информации об активации нейронов на выходе в цифровой двоичный код. Представлена реализация аппаратной нейросети процессора на основе оригинальной биоморфной электрической модели нейрона. Приведены результаты SPICE-моделирования и экспериментального исследования процессов обработки сигналов в режимах маршрутизации выходных импульсов нейронов на синапсы других нейронов в логической матрице, скалярного умножения матрицы чисел на вектор, а также ассоциативного самообучения в запоминающей матрице. Впервые продемонстрирована генерация новой ассоциации (нового знания) как в компьютерном моделировании, так и в изготовленном мемристорно-диодном кроссбаре, в отличие от самообучения в существующих аппаратных нейросетях с синапсами на базе дискретных мемристоров. Primary and ultimate information processing takes place in the input and output devices of the biomorphic neuroprocessor. The results are presented on the compression of digital information at the input and its coding into pulses, as well as on the decoding of information about the activation of neurons at the output into a digital binary code. An implementation of a hardware neural network of a processor based on an original biomorphic electrical model of a neuron is presented. The results of SPICE modeling and experimental research of signal processing processes in the modes of routing neuron output pulses to synapses of other neurons in a logical matrix, scalar multiplication of a matrix of numbers by a vector, and associative selflearning in a memory matrix are presented. For the first time, the generation of a new association (new knowledge) was demonstrated both in computer simulation and in a fabricated memristor-diode crossbar, in contrast to self-learning in existing hardware neural networks with synapses based on discrete memristors.

Publisher

Technosphera JSC

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algorithms for building and operation modeling of large electrical circuits with memristor-diode crossbars in a biomorphic neuroprocessor;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3