MedicagoN2-Fixing Symbiosomes Acquire the Endocytic Identity Marker Rab7 but Delay the Acquisition of Vacuolar Identity

Author:

Limpens Erik1,Ivanov Sergey12,van Esse Wilma1,Voets Guido1,Fedorova Elena12,Bisseling Ton1

Affiliation:

1. Laboratory of Molecular Biology, Graduate School of Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands

2. K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127392, Russia

Abstract

AbstractRhizobium bacteria form N2-fixing organelles, called symbiosomes, inside the cells of legume root nodules. The bacteria are generally thought to enter the cells via an endocytosis-like process. To examine this, we studied the identity of symbiosomes in relation to the endocytic pathway. We show that in Medicago truncatula, the small GTPases Rab5 and Rab7 are endosomal membrane identity markers, marking different (partly overlapping) endosome populations. Although symbiosome formation is considered to be an endocytosis-like process, symbiosomes do not acquire Rab5 at any stage during their development, nor do they accept the trans-Golgi network identity marker SYP4, presumed to mark early endosomes in plants. By contrast, the endosomal marker Rab7 does occur on symbiosomes from an early stage of development when they have stopped dividing up to the senescence stage. However, the symbiosomes do not acquire vacuolar SNAREs (SYP22 and VTI11) until the onset of their senescence. By contrast, symbiosomes acquire the plasma membrane SNARE SYP132 from the start of symbiosome formation throughout their development. Therefore, symbiosomes appear to be locked in a unique SYP132- and Rab7-positive endosome stage and the delay in acquiring (lytic) vacuolar identity (e.g., vacuolar SNAREs) most likely ensures their survival and maintenance as individual units.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3