Biochemical Networks and Epistasis Shape theArabidopsis thalianaMetabolome

Author:

Rowe Heather C.1,Hansen Bjarne Gram2,Halkier Barbara Ann2,Kliebenstein Daniel J.1

Affiliation:

1. Genetics Graduate Group and Department of Plant Sciences, University of California Davis, Davis, California 95616

2. Plant Biochemistry Laboratory, Department of Plant Biology, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg C, Copenhagen, Denmark

Abstract

AbstractGenomic approaches have accelerated the study of the quantitative genetics that underlie phenotypic variation. These approaches associate genome-scale analyses such as transcript profiling with targeted phenotypes such as measurements of specific metabolites. Additionally, these approaches can help identify uncharacterized networks or pathways. However, little is known about the genomic architecture underlying data sets such as metabolomics or the potential of such data sets to reveal networks. To describe the genetic regulation of variation in the Arabidopsis thaliana metabolome and test our ability to integrate unknown metabolites into biochemical networks, we conducted a replicated metabolomic analysis on 210 lines of an Arabidopsis population that was previously used for targeted metabolite quantitative trait locus (QTL) and global expression QTL analysis. Metabolic traits were less heritable than the average transcript trait, suggesting that there are differences in the power to detect QTLs between transcript and metabolite traits. We used statistical analysis to identify a large number of metabolite QTLs with moderate phenotypic effects and found frequent epistatic interactions controlling a majority of the variation. The distribution of metabolite QTLs across the genome included 11 QTL clusters; 8 of these clusters were associated in an epistatic network that regulated plant central metabolism. We also generated two de novo biochemical network models from the available data, one of unknown function and the other associated with central plant metabolism.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3