Roles for Rice Membrane Dynamics and Plasmodesmata during Biotrophic Invasion by the Blast Fungus

Author:

Kankanala Prasanna1,Czymmek Kirk2,Valent Barbara1

Affiliation:

1. Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506

2. Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711

Abstract

Abstract Rice blast disease is caused by the hemibiotrophic fungus Magnaporthe oryzae, which invades living plant cells using intracellular invasive hyphae (IH) that grow from one cell to the next. The cellular and molecular processes by which this occurs are not understood. We applied live-cell imaging to characterize the spatial and temporal development of IH and plant responses inside successively invaded rice (Oryza sativa) cells. Loading experiments with the endocytotic tracker FM4-64 showed dynamic plant membranes around IH. IH were sealed in a plant membrane, termed the extra-invasive hyphal membrane (EIHM), which showed multiple connections to peripheral rice cell membranes. The IH switched between pseudohyphal and filamentous growth. Successive cell invasions were biotrophic, although each invaded cell appeared to have lost viability when the fungus moved into adjacent cells. EIHM formed distinct membrane caps at the tips of IH that initially grew in neighboring cells. Time-lapse imaging showed IH scanning plant cell walls before crossing, and transmission electron microscopy showed IH preferentially contacting or crossing cell walls at pit fields. This and additional evidence strongly suggest that IH co-opt plasmodesmata for cell-to-cell movement. Analysis of biotrophic blast invasion will significantly contribute to our understanding of normal plant processes and allow the characterization of secreted fungal effectors that affect these processes.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3