The Membrane-Anchored BOTRYTIS-INDUCED KINASE1 Plays Distinct Roles in Arabidopsis Resistance to Necrotrophic and Biotrophic Pathogens

Author:

Veronese Paola1,Nakagami Hirofumi2,Bluhm Burton1,AbuQamar Synan1,Chen Xi3,Salmeron John3,Dietrich Robert A.3,Hirt Heribert2,Mengiste Tesfaye1

Affiliation:

1. Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054

2. Gregor Mendel Institut, A-1010 Vienna, Austria

3. Syngenta Biotechnology, Research Triangle Park, North Carolina 27709

Abstract

Abstract Plant resistance to disease is controlled by the combination of defense response pathways that are activated depending on the nature of the pathogen. We identified the Arabidopsis thaliana  BOTRYTIS-INDUCED KINASE1 (BIK1) gene that is transcriptionally regulated by Botrytis cinerea infection. Inactivation of BIK1 causes severe susceptibility to necrotrophic fungal pathogens but enhances resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae pv tomato. The response to an avirulent bacterial strain is unchanged, limiting the role of BIK1 to basal defense rather than race-specific resistance. The jasmonate- and ethylene-regulated defense response, generally associated with resistance to necrotrophic fungi, is attenuated in the bik1 mutant based on the expression of the plant defensin PDF1.2 gene. bik1 mutants show altered root growth, producing more and longer root hairs, demonstrating that BIK1 is also required for normal plant growth and development. Whereas the pathogen responses of bik1 are mostly dependent on salicylic acid (SA) levels, the nondefense responses are independent of SA. BIK1 is membrane-localized, suggesting possible involvement in early stages of the recognition or transduction of pathogen response. Our data suggest that BIK1 modulates the signaling of cellular factors required for defense responses to pathogen infection and normal root hair growth, linking defense response regulation with that of growth and development.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3