Affiliation:
1. I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
2. Medical Center "Professor Serhiienko's Eye Clinic", Vinnytsia, Ukraine
Abstract
Introduction. Retinal detachment (RD) is a common pathological condition that without timely surgical treatment leads to vision loss. The patients with significant RD undergo one of three retreatment procedures: Pneumatic Retinopexy, Scleral Buckling, and/or Pars Plana Vitrectomy. Techniques and tools for these procedures have been developed, but the methods themselves still have a significant number of complications. A possible alternative to their further improvement may be a fundamentally new method of treatment, coagulation of the retina with high-frequency electric current (HFEC), for which significant improvement of the tool is still possible.
The purpose of the study was to determine a safer method of RD treating and to improve medical tools for restoring anatomical integrity and repositioning a detached retina under two conditions: firstly, obtaining a reliable chorioretinal adhesion, and secondly, minimizing the number of incidental effects of surgical intervention.
Materials and methods. The bibliosemantic method, the system analysis method, an experiment on laboratory animals (rabbits) with RD simulation and its coagulation by HFEC, tissue biopsy of operated animals after their euthanasia on the 7th day after surgery, and the production of histological micro-preparations were used.
Results. To fulfill the conditions for improving the method, a chorioretinal high-frequency electrocoagulation operation with suprachoroidal access, a modified EK-300M1 generator (Kyiv, Ukraine) with an electrode with a gold hemispherical tip of 25 gauge and electrical generation parameters of 66 kHz, 10‒16 V, 0.1 A was proposed, which causes chorioretinal adhesion in the place where the electrode is used. The method of calculating the parameters of heat transfer from the electrocoagulation tool to the tissues and fluids of the eye was selected: it was proposed to use the Fourier-Kirchhoff and Newton-Richmann equations. Destructive phenomena in the retina from the thermal effect of tissue coagulation in the form of the destruction of rods, cones, the development of cysts, the loss of bipolar, amacrine, horizontal and ganglion cells were noted. Atrophic changes in the retina were minimal at a voltage of 10‒12 V.
Conclusions. The problem of improving the methods of restoring the anatomical position of the retinal layers has been relevant for many decades, but it does not lead to a significant reduction in the number of complications. The proposed method and tool for its application causes the creation of a reliable chorioretinal adhesion in a short period of time after surgical intervention with minimal thermal tissue damage. The use of the method of chorioretinal high-frequency electrocoagulation with suprachoroidal access is recommended in conditions of urgent restoration of vision, but not recommended for the prevention of retinal detachment in retinopathies.
Keywords: retinal detachment, chorioretinal adhesion, high-frequency electrocoagulation, suprachoroidal access.
Publisher
Kharkiv National Medical University
Reference49 articles.
1. Krasnovіd TA, Aslanova VS, Bondar NI. Main aspects of traumatic eye injures during wars and military conflicts. Archives of Ukrainian ophthalmology. 2020;8(1):78-85. https://doi.org/10.22141/2309-8147.8.1.2020.200741 [in Ukrainian].
2. The Ministry of Health Care publishes information on what to do in case of eye damage during hostilities. Government portal of Ukraine. 04 Jun 2022 [Internet]. Available at: https://www.kmu.gov.ua/news/moz-publikuye-informaciyu-shcho-robiti-u-vipadku-poshkodzhennya-ochej-pid-chas-voyennih-dij [Accessed October 1, 2022]. [In Ukrainian].
3. Committee on Tactical Combat Casualty Care (CoTCCC); Drew B, Montgomery H, Anderson S, Barbabella S, Baskin K, et al. Guidelines for Medical Personnel "Tactical Combat Casualty Care (TCCC)". 15 Dec 2021 [Internet]. Available at: https://learning-media.allogy.com/api/v1/pdf/1045f287-baa4-4990-8951-de517a262ee2/contents [Accessed 1 Oct 2022].
4. Dutca LM, Stasheff SF, Hedberg-Buenz A, Rudd DS, Batra N, Blodi FR, et al. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243. Investigative ophthalmology & visual science. 2014;55(12):8330-41. DOI: 10.1167/iovs.14-15468.
5. Zavhorodnia NH, Sarzhevska LE, Ivakhnenko OM, Tsybulska TIe, Poplavska IO, Kostrovska KO. Kontuziia orhana zoru: navchalno-metodychnyi posibnyk dlia likariv-interniv zi spetsialnosti "Oftalmolohiia" [Contusion of the organ of vision: educational and methodological manual for intern doctors in the specialty "Ophthalmology"]. Zaporizhzhia: Zaporizhia State Medical University; 2017. 71 p. Available at: https://is.gd/oTqOtU [in Ukrainian].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献