An Optimized Mask R-CNN with Bag-of-Visual Words and Fast+Surf Algorithm in Sharp Object Instance Segmentation for X-ray Security

Author:

Abong Edgardo Jr S.1,Janducayan Karelle Teyle A.1,Lima Jomer Mae M.1,Aborde Meljohn V.1

Affiliation:

1. University of Mindanao, Matina, Davao City, Philippines

Abstract

Automated security X-ray analysis is highly desired for efficiently inspecting sharp objects. The research formulated an optimized approach for sharp object detection using a Mask R-CNN architecture. The dataset used during the training phase consists of 238 balanced raw images extracted from GitHub named OPIXray. The researchers utilized recent advances in computer vision algorithms, including the Bag-of-Words and Fast+Surf feature extraction techniques, to improve the accuracy and reliability of object deletion. The research demonstrated that the optimized versions of the classification and object detection models have significantly improved accuracy for most categories, with a 5% improvement for the clear category and a 3% improvement for both the scissor and straight knife detection.

Publisher

Association for Information Communication Technology Education and Science (UIKTEN)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3