Author:
SHOLOM SERGEY,McKeever Steve
Abstract
The potential of the back protective glass from modern smartphones as a possible material for an emergency triage, OSL dosimeter was evaluated. Strong OSL signals were observed in samples of glass from phones of different models and brands after irradiation. Some important parameters of these signals were analyzed, namely the OSL decay curve shape, the dependence on dose, and the stability (fading) with time after exposure. Analysis of the shape suggested that the main mechanism of the OSL production is optically assisted tunneling. The dose-response characteristics demonstrated linearity in the tested dose range (0-2.7 Gy) provided that fading was accounted for during calibration irradiation. The fading after irradiation was described by a universal, two-component function with a primary component due to tunneling and a secondary, thermal component. Dose reconstruction tests were carried out for in-service phones exposed to known doses and then kept in normal usage (phone calls, texts, web surfing, etc.) as well as for out-of-service phones irradiated to blind (unknown) doses. Dose reconstruction was conducted using a custom-made OSL reader without dismantling any part of the phone. OSL-reconstructed, fading-corrected doses were within 25% (worse case) of the corresponding nominal values. It was concluded that the back protective glass can be used as an OSL emergency triage dosimeter (if protected from ambient light by a phone case).
Publisher
Sociedade Brasilieira de Protecao Radiologica - SBPR
Reference20 articles.
1. DEGTEVA, M.O., ANSPAUGH, L.R., AKLEYEV, A.V., JACOB, P., IVANOV, D.V., WEISER, A., VOROBIOVA, M.I., SHISHKINA, E.A., SHVED, V.A., VOZILOVA, A.V., BAYANKIN, S.N., NAPIER, B. Electron paramagnetic resonance and fluorescence in situ hybridization-based investigations of individual doses for persons living at Metlino in the upper reaches of the Techa River. Health Phys, v. 88, p. 139–153, 2005.
2. CHUMAK, V., SHOLOM, S., PASALSKAYA, L. Application of high precisions EPR dosimetry with teeth for reconstruction of doses to Chernobyl populations. Radiat Prot Dosim, v. 84, p. 515-520, 1999.
3. ISHIKAWA, T. Radiation doses and associated risk from the Fukushima nuclear accident: a review of recent publications. Asia Pacific J Public Health, v. 29(2S), p. 18S–28S, 2017.
4. BAILIFF, I.K., MCKEEVER, S.W.S., SHOLOM, S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: a review. Radiat Meas, v. 94, p. 83–139, 2016.
5. ICRU - International Commission on Radiation Units and Measurements. Methods for Initial-Phase Assessment of Individual Doses Following Acute Exposure to Ionizing Radiation, ICRU Report 94, J. ICRU, 2019. 162p.