Simulation of pollutants spreading from a sewage outfall in the Rijeka Bay

Author:

MRŠA HABER IVA,LEGOVIĆ TARZAN,KRANJČEVIĆ LADO,CUKROV MARIJAN

Abstract

Results from a 3D numerical simulation of wind-induced currents and pollution spreading from a sewage outfall are described.The goal was to predict seawater sanitary quality in the Rijeka Bay, Adriatic Sea. A sea motion model was coupled with a modelof transport and chemical reactions of fecal coliforms (FC), fecal streptococci (FS) and dissolved oxygen. The selected simulationperiod of 36 hours following wastewater discharge was found to be sufficient for a significant extinction of bacteria. The simulationwas carried out for eight wind directions and two intensities (moderate and high). Mesh convergence was obtained. Twomesh sizes were coupled: coarse, for the whole Bay, and fine, for the northern part of the Bay, close to the sewage discharge ofthe Rijeka city.For all considered wind directions, the pollution plume with a concentration higher than 100 FC and 100 FS per 100 ml of seawateris conveyed mostly parallel to the coast in either north-west or south-east directions. The plume does not rise to the surfacebut stays at the depth of 10 to 20 meters. This is a consequence of the hydrodynamics of the Rijeka Bay: the bora wind carriesthe surface water layer out of the Bay through the Middle and Great Gates, while cold water enters the Bay from the layer belowthe thermocline. During the southern wind (jugo), the situation is reversed: warmer surface water enters the Bay through eitherthe Middle Gate or the Great Gate, while cold seawater exits through the bottom layer, accumulating warmer seawater in the Bay.The conclusion is that the Rijeka city sewage discharge Delta is well-designed, and the microorganism concentration is wellwithin the suggested regulatory range. The discharge site is far enough from the coast, where local streamlines are mostly parallelto the coast, hence the elevated pollution concentration does not come close to swimming and recreational areas. Even if thedischarge increases by 50%, which is unlikely in the near future, the pollution at beaches will stay within regulatory boundaries.

Publisher

National Documentation Centre (EKT)

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics,Environmental Engineering,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3