Affiliation:
1. Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Sloviansk, Ukraine
2. Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Sloviansk, Ukraine
Abstract
We prove Harnack-type inequalities for bounded non-negative solutions of the
degenerate parabolic equations with $(p,q)$ growth
\begin{equation*}
u_{t}-\mathrm{div}\left(\mid \nabla u \mid^{p-2}\nabla u + a(x,t) \mid
\nabla u \mid^{q-2}\nabla u \right)=0,\quad a(x,t) \geq 0 ,
\end{equation*}
under the generalized non-logarithmic Zhikov's conditions
\begin{equation*}
\mid a(x,t)-a(y,\tau)\mid \leqslant A\mu(r) r^{q-p},\quad (x,t),(y,\tau)\in
Q_{r,r}(x_{0},t_{0}),
\end{equation*}
\begin{equation*}
\lim\limits_{r\rightarrow 0}\mu(r) r^{q-p}=0,\quad \lim\limits_{r\rightarrow
0}\mu(r)=+\infty,\quad \int\limits_{0} \mu^{-\beta}(r)\frac{dr}{r} =+\infty,
\end{equation*}
\noindent with some ~$\beta >0$.
Publisher
Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine