Affiliation:
1. Krasovskii Institute of Mathematics and Mechanics, The Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia; Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
Abstract
We consider a sequence of convex integral functionals $F_s:W^{1,p}(\Omega_s)\to\mathbb R$
and a sequence of weakly lower semicontinuous and, in general, nonintegral functionals
$G_s:W^{1,p}(\Omega_s)\to\mathbb R$, where $\{\Omega_s\}$
is a sequence of domains in $\mathbb R^n$ contained in a bounded domain
$\Omega\subset\mathbb R^n$ ($n\geqslant 2$) and $p>1$.
Along with this, we consider a sequence of closed convex sets
$V_s=\{v\in W^{1,p}(\Omega_s): M_s(v)\leqslant 0\,\,\text{a.e.\ in}\,\,\Omega_s\}$,
where $M_s$ is a mapping from $W^{1,p}(\Omega_s)$ to the set
of all functions defined on $\Omega_s$.
We establish conditions under which minimizers and minimum values
of the functionals $F_s+G_s$ on the sets $V_s$ converge
to a minimizer and the minimum value of a functional on the set
$V=\{v\in W^{1,p}(\Omega): M(v)\leqslant 0\,\,\text{a.e.\ in}\,\,\Omega\}$,
where $M$ is a mapping from $W^{1,p}(\Omega)$ to the set
of all functions defined on $\Omega$.
Publisher
Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine
Reference31 articles.
1. Boccardo, L., Murat, F. (1991). Homogenization of nonlinear unilateral problems. In: Composite Media and Homogenization Theory, Prog. Nonlinear Differ. Equ. Appl. 5, Birkhäuser, Boston, pp. 81-105. https://doi.org/10.1007/978-1-4684-6787-1_6
2. Dal Maso, G. (1983). Limits of minimum problems for general integral functionals with unilateral obstacles. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 74 (2), 55–61.
3. Dal Maso, G. (1993). An Introduction to Γ-Convergence. Boston: Birkhäuser.
4. De Giorgi, E., Franzoni, T. (1975). Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (6), 842–850.
5. Khruslov, E.Ya. (1977). The first boundary value problem in domains with a complicated boundary for higher order equations. Math. USSR-Sb., 32 (4), 535–549. http://dx.doi.org/10.1070/SM1977v032n04ABEH002405
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献