Affiliation:
1. M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Abstract
We discuss several topics: the concept of conformal mapping of Riemannian and pseudo-Riemannian manifolds, conformal rigidity of higher-dimensional domains, and conformal flexibility of two-dimensional domains of
Euclidian and Minkowski planes.
We present an extension of the concept of conformal mapping proposed by M. Gromov and recall an open problem related to it.
Publisher
Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine
Reference5 articles.
1. Zorich, V.A. (2018). Liouville theorem on conformal mappings of domains in multidimensional Euclidean and pseudo-Euclidean spaces. Matematički vesnik, 70 (2), 183–188. 1
2. Landau, L. D., & Lifshitz, E. M. (1969). Short course in theoretical physics. Book 1. Mechanics. Electrodynamics. M., Nauka (in Russian).
3. Gromov, M. Number of Questions. (2014). https://www.ihes.fr/~gromov/wp-content/uploads/2018/08/problems-sept2014-copy.pdf
4. Schottenloher, M. (2008). A Mathematical Introduction to Conformal Field Theory. Springer Lecture Notes in Physics, 759. DOI: 10.1007/978-3-540-68628-6
5. Kühnel, W., & Rademacher, H.-B. (2007). Liouville’s theorem in conformal geometry. Journal de Math´ematiques Pures et Appliqu´ees, 88 (3), 251–260. DOI: 10.1016/j.matpur.2007.06.005