Optimizing ageing conditions for commercial NiTi archwires: Insights from thermal phase transformation and tensile deformation analysis

Author:

Munir Asad,Razali Muhammad Fauzinizam,Mahmud Abdus Samad,Ng Chinwei,Zulfiqar Sana

Abstract

Superelastic nickel-titanium (NiTi) archwires are now commonly used as the standard archwire during the orthodontic alignment and levelling stage. They are preferred due to their ability to apply minimal force on teeth while allowing for a wide range of tooth movements. During orthodontic treatment, the orthodontist assesses the dimension and shape of the NiTi archwire to determine the amount and direction of force required to align misaligned teeth. The main contribution of this study is the parametric analysis and establishment of a set of optimal ageing temperatures and duration for the investigation of functionally graded nickel-titanium archwire using differential scanning calorimetry (DSC) and tensile deformation testing. The mechanical and thermal phase transformation behavior after ageing at six temperatures for duration of 15 minutes have been investigated using tensile deformation test and differential scanning calorimetry (DSC) test in this paper. Experimental results reveal that in thermal analysis as the ageing temperatures increase from 400 °C to 490 °C, the austenite finish temperature rises to a value between 9.53 °C and 35.48 °C, and subsequently decreases to 520 °C. The archwire specimen aged for temperature of 490 °C exhibited the austenite finish temperature of around 35.48 °C, and it is highest among the aged wire specimens closest to oral temperature. In tensile deformation, the ideal ageing temperature for orthodontic applications was determined to be 490 °C for 15 minutes, resulting in relatively low plateau slope 13.73 GPa with high superelatic ratio 12.04, and maximum plateau strain of 7 %.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3