Review of Computational Techniques for Modelling Eco-Safe Driving Behavior

Author:

Jain Neetika,Sangeeta Mittal

Abstract

Driving is a complex task involving the perception of the driving event, planning response, and action. Safe driving ensures the vehicle’s and its passengers’ safety, whereas economical driving brings down fuel consumption. Eventually, eco-safe driving that ensures economical as well as safe driving is the best bet. This review paper provides a systematic comprehensive analysis across cross-cutting dimensions such as data collection mechanisms, features affecting eco-safe driving, computational models for driving behavior analysis, driver motivational approaches towards eco-safe driving, exploiting research gaps and opportunities for further research in this domain. Driving behavior along with environmental context, including weather information, road conditions, traffic flow and time of travel, represent the most effective factors for doing eco-safe driving analysis. 82% of reviewed papers recommended OBD as a reliable data collection source, along with supplementary information from body sensors and cameras. The K-Mean clustering is an effective driving profiling technique clubbed with dimensionality reduction techniques based on Random Forest regressor, PCA and autoencoders. Deep learning and ensemble learning-based safety approaches utilizing Recurrent Convolutional Networks (RCN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) and Decision Tree (DT) have achieved impressive accuracies surpassing 99%, followed by Neural Networks (NN), Support Vector Machines (SVM) and Random Forest (RF) with accuracy ranging from 91% to 96%. Long Short-Term Memory (LSTM) yielded superior Area Under Curve (AUC of 0.836) for fuel prediction, in comparison to Support Vector Machines (SVM) and Neural Networks (NN). Gated Recurrent Unit (GRU) represents fine-grained accurate fuel-prediction methods with accuracy comparable to Long Short-Term Memory (LSTM). Prominent research gaps identified during this study are the lack of a comprehensive approach covering all aspects related to safety, fuel economy, the scope of improvement in real-time driving risk assessment at appropriate granularity level, missing effective and engaging driving feedback, dealing with uncertain and incomplete driving events, driver’s personal traits affecting driving safety and fuel-economy. The review will help in establishing the readiness of automation of driving analysis for reinforcement of eco-safe driving for various kinds of vehicles plug-in hybrid vehicles, hybrid electric vehicles, electric vehicles, and self-driving cars.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An intelligent analysis of miscellaneous behavior and Fraud Detection in CVD diagnosis insurance claims data using deep learning framework;2023 IEEE Technology & Engineering Management Conference - Asia Pacific (TEMSCON-ASPAC);2023-12-14

2. Investigation of Object Detection and Identification at Different Lighting Conditions for Autonomous Vehicle Application;International Journal of Automotive and Mechanical Engineering;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3