Enhancing the Durability of Connecting Rod of a Heavy-Duty Diesel Engine

Author:

Ismail IslamORCID,Abdelrazek Elsayed,Ismail Mostafa,Emara Ahmed

Abstract

This paper investigates the mechanical loads resulting from the combustion pressure and dynamic inertia and their effects on the connecting rod of a direct injection turbocharged diesel engine. The main purpose is to enhance the durability of the connecting rod in order to withstand more engine power increase. The distribution of the axial (compressive/tensile) stress, deformation, and safety factors are calculated in order to predict any possible mechanical failure. The finite element routine is used by ANSYS Workbench to analyse the loading on the connecting rod model. The current study is applied to the connecting rod of a 300 hp diesel engine in order to increase the engine power by 17%. The connecting rod operates safely and withstands the applied loads until the power increase reaches 72%. The most stressed points are at the connecting rod shank, while less stressed are experienced at the big end. Calculations show that introducing some changes to the connecting rod geometry may result in decreasing the excessive stresses. These changes include increasing the thickness of the shank cross-section, increasing the fillets radii and slightly reducing the dimensions of the big end in order to maintain the same mass. The new geometry could significantly reduce the maximum stress by 25.5% with an insignificant reduction in the total mass of the connecting rod.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3